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A self-consistent field (SCF) theory and a Monte Carlo (MC) simulation technique have been developed for 
block copolymer systems. Calculations were carried out using both SCF theory (with a simple mean-field 
potential) and MC simulation for an AB diblock copolymer chain for a wide range of solvent conditions. 
Fairly good agreement between these two methods was found. For an ABA triblock copolymer, a sharp 
transition between two conformations was observed by MC simulation: in one state conformation the 
copolymer has two collapsed A globules at either end of the B block chain and in the other state 
conformation one collapsed A globule comprising of the two A blocks with a loop of the B block chain 
sticking out. It is our strong suspicion that this would be a true phase transition in the limit of infinite chain 
length. Copyright © 1996 Elsevier Science Ltd. 
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I N T R O D U C T I O N  

The conformational and thermodynamic properties of  
copolymers depend strongly on interactions between 
segments as well as on the composition of  chains and the 
flexibility of  the blocks. Flexible copolymer solutions 
exhibit very rich phase behaviour and can undergo 
micellization and gelation processes as the polymer 
concentration increases. Extensive experimental 
work ~ 3 has been carried out. In the concentrated 
regime, cubic, hexagonal, lamellar and other phases 
have been identified 4'5. Although there is quite an 
amount of experimental results, theoretical work 1'2'6-12 
and computer simulation 13 on these complicated phase 
behaviours are still rather limited. The phase behaviour 
of copolymer solutions depends upon understanding the 
difference of  Gibbs free energy between the chains in a 
self-assembled state and in an isolated state. In this 
paper, we focus on studying the behaviour of  the isolated 
copolymer chain in selective solvents. 

Among the early work on an isolated copolymer chain 
was that of  Froelich and Benoit 14 who investigated the 
case where the segments had small excluded volumes so 
that departures from Gaussian configurations could be 
analysed via a perturbation expression. The effect of  
larger excluded volumes on diblock copolymers was 
explored by Edwards 15 using a self-consistent set of  
mean field equations. In the special case of equal block 
l e n g t h s  ( L  A = LB for the continuous chain model), equal 
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number of  segments in each block (n A =nB) and the 
interaction parameters (the second virial coefficients) of 
the segments related by WAA = 'UBB = - - ~ 3 A B  , Edwards 
showed one solution to the mean field equations was a 
Gaussian distribution for each block, yielding a spheri- 
cally symmetric density profile centred on the mass 
centre, but for sufficiently negative values of ~)AA another 
solution to the equations was a dumb-bell-like density 
distribution in which the A chain concentrated in one 
lobe and the B chain in the other. A phase transition 
between these two states was predicted. Additional 
theoretical approaches include the biellipsoidal model 
calculations of Bendler et  al. 1(~18 in which the A and B 
chains are modelled as smooth ellipsoidal density clouds. 
The theory is in basic agreement with the simulation 

19 ~2 results of Tanaka e t  al. and the authors report that 
for VAA = ~UBB = - - U A B ,  the combination studied by 
Edwards, rapid conformational changes do occur. 
Kurata and Kimura 23 present a smoothed-density 
treatment. The theory, for n A = n B, predicts the coil- 
globule collapse if VAB is made more and more negative 
when VAA = VBB = 0, and in the Edwards' case where 
UAA = ~)BB = - - U A B  predicts the collapsed dumb-bell 
form as did Edwards for sufficiently large and positive 
VAB. When the theory is applied to the triblock A - B - A  
chain (with equal numbers of  A and B segments) then a 
collapse transition is predicted in the ~uaA = ~3BB = mVAB 
case, for m < --2, with the two A chains coming together. 
More recent theoretical studies have been carried out 
using renormalization group techniques both for diblock 
and triblock copolymers, and good quantitative agree- 
ment is claimed between the theoretical results and 
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Monte Carlo simulation 24 26. These calculations have 
the great advantage of avoiding many of the approxima- 
tions that are introduced in more intuitive theories, but 
unfortunately the theories are largely limited to polymers 
in good solvents and so do not, as yet, give information 
about  the coil-globule or the segregation transition. 

in the present work, we shall apply a self-consistent 
field (SCF) theory and Monte Carlo (MC) simulation 
technique in studying the segregation transition of a 
single block copolymer chain. The MC simulation 
technique and the SCF theory are presented below. 
The segregation transitions of  a block copolymer chain 
are discussed later. We shall end with a summary. 

M O N T E  C A R L O  S I M U L A T I O N  T E C H N I Q U E  

We consider a linear diblock copolymer  of  n links, 
each of length l0 and connecting an A block of na beads 
to a B block with n b beads. The chain molecule is 
modelled as a self-avoiding walk on a d iamond lattice, 
with a potential  of  interaction of  E, in units of  k BT, 
between total non-bonded neighbouring beads. Here 
kB is Bol tzmann 's  constant  and T is the absolute 
temperature.  The non-bonded interaction energy 
consists of  interact ions between so lvent -so lvent ,  
segment-segment  and solvent segment pairs. The dis- 
tance between two nearest-neighbours has a length of 
lo( l  2 = 3). Only the nearest-neighbour interactions 
are considered, and the conformations in which 
multiple occupancy of lattice sites occur are forbidden. 
The AEpp (p, p ' :  A or B) measures the energy of a 
polymer solvent contact Cps relative to the energies of  
p o l y m e r - p o l y m e r  Cpp and solvent-solvent Css contacts. 
Thus, 

AEpp = 6"pp + ess -- Cps --  Cp, s (1) 

AEpp = 0 represents an athermal system where there is 
no resulting energy change upon the formation of a 
segment-segment  pair. I f  AE-pp is very negative, it 
describes a polymer in a poor  solvent, which means 
that po lymer -po lymer  contacts are favoured, leading to 
a collapse in the chain dimensions at low temperatures. 
The total interaction energy of a system, E, can be 
obtained as the sum of all the pair-wise interactions 
corresponding to the various species as 

E = NAAACAA q- NBBAEBB + NABA~AB (2) 

where NAA, NBB and NAB are the number  of  non-bonded 
A A, B B and A B nearest-neighbour segments 
respectively. 

The algori thm used was the single-bond rotat ion or 
27 pivot algorithm, first introduced by Lal and analysed 

28 thoroughly by Madras  and Sokal . This system has 
been treated by many  authors and we have simply 
applied it in a block copolymer  and sought to con- 
duct rather long runs and thereby improve the 
accuracy. Using the Metropolis  importance sampling 
scheme, the conformat ions  in the limit of  a large 
sample occur with a frequency proport ional  to their 
Boltzmann factor. Therefore,  the estimated mean value 
of  conformat ional  proper ty  (A) over the canonical 
ensemble, is given by 

1 K 

{ A ) - - K _ K o  Z A(Xi) (3) 
i=K0+I 

where A(Xi)  is the value of  the property for configuration 
Xi and K is the number  of  configurations in the sample. 
In order to avoid a systematic error due to incomplete 
equilibration, the value of K0 is carefully chosen. 

The mean-square end-to-end distance (R 2) of  the 
chain is calculated from a simple average over the sample 
of  configurations, i.e. 

(R2)  _ 1 K 
K - K o ~'~ [Ri(I) - Ri(n)] 2 (4) 

i=K~+ 1 

where the values of  Ri(1) and Ri(n) are the end segment 
coordinates of  the chain in a configuration Xi. The mean- 
square radius of  gyration (R~) is written as 

where 

1 K 

-- K~o+ R~ (Xi) (5) K - K  o , :  , 

1 ,, n +  1 

R2g(Xi) = (l ~_?1)2 i~] j~] F2ij 

and rij is the distance between beads i and j. The mean 
heat capacity (Cv) is given by 

 IxA 
i=K°+l - -  l 

- k B T 2 ( C v )  = K -  K o I 

J 

- [E(Xi)I?  
i :Ko+l / 

) 
(6) 

The statistical errors were estimated by dividing the 
reduced sample of  configurations into k sub-samples and 
assuming that the estimates given by the sub-samples are 
uncorrelated. 

T H E  S E L F - C O N S I S T E N T  F I E L D  T H E O R Y  

It has been shown by Edwards 29 that the conformations of 
a flexible chain can be related to the possible paths of  a 
non relativistic particle in quantum mechanics. The SCF 
approach in polymer physics is related to Flory's mean 
field concept. An average is made over all segments of  a 
polymer chain to produce an excluded volume field 
restricting the placement of each segment. The object of  
SCF theory is to self-consistently determine this mean 
field. With the modified Edwards Hamiltonian for 
polymers, we have extended the self-consistent field 
(SCF) approach to deal with the behaviour of  a polymer 
both in good and bad solvents 3° and to account for the 
micellization of diblock copolymers in selective solvents 8. 

Let us consider the diblock copolymer formed by 
connecting a block A of length L A to  a block B of length 
LB. The total contour length, L, of  the diblock 
copolymer chain is thus given by L = L A + L B. The 
short range interactions between segments in a diblock 
copolymer can be coarse grained into the statistical 
Kuhn lengths b A and bB. The additional difficulty in 
calculating the properties of  a copolymer arises from the 
presence of three interaction parameters,  i.e. interactions 
between A - A  segments 'UAA , B B segments VBB and 
A B segments VAB. I f  we fix the initial segment of the A 
block at the origin, the other end of the A block (the join 
with the B block) at the space point Rj and the 
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unattached end of the B block at RB, the partition 
function for all possible conformations of the copolymer 
is given within the SCF approximation by 

~c(LA, LB) = ]  dRjdRBGc(RB, Rj, 0; LB, LA, 0) (7a) 

= l  dRjdRBGA(Rj' 0; LA, 0)GB(RB, Rj; LB, 0) 

(7b) 

where the Greens functions G A and GB in equation (7b) 
satisfy the following SCF equations 

[0oO..TA bAv2q_flCOA(R)]GA(R;0;7.A,0) ~ _ _ 6 ( R ) o q ( 7 _ A ) 6  

(0 < TA <LA) (8) 

and 

bu V~+flWB(R)I GB(R, Rj; TB, 0) =6(R ~ R J ) ~ ( ~ B )  

(0 < 7-B <LB) (9) 

where fl = 1/kB T. In order to approximate the interac- 
tions between A - A  segments, B-B segments and A-B 
segments, the potentials of mean force in equations (8) 
and (9) for a diblock copolymer chain are taken to be 
given by 

flcoA(R) = -{ln[1 - V0APA(R ) -- V0BPB(R)] 

+ 2XAAV0A(R ) -/- 2XABVOBPB(R)}/b A (10) 

and 

flwB(a) = -{ln[1 - V0APA(R ) -- V0BPB(R)] 

+ 2XBBVOBPB(R ) + 2XABvOAPA(R)}/b B (1 1) 

where V0p (p, p ' =  A or B) are the segment hard core 
volumes of the A and B segments respectively and Xpp '  

are the Flory's interaction parameters between segments. 
The logarithm terms remedy the problems of the 
unphysically high segment densities for the original 

33 34 SCF equations when the second virial coefficient 
between segments becomes negative, i.e. v = v0(1 -2X)  
and X < 0.5. It treats approximately the hard core 
potential and the remaining terms treat the effects of 
the attractive forces. No doubt better forms for Cop(R) 
can be found, drawing for example on the density 
functional theory of liquids, but here we just use the 
simple form given above, pA(R) and pB(R) are the 
density distribution functions of the A and B segments 
respectively, which may be written as 

pA(R) : 

I~AdTAGA(R,O:'rA,O)IdRjdRBGA(Rj,R;LA,TA)GB(RB,Rj;LB,O) 
f~c (LA, LB) 

(12) 
and 

pB(R) = 

IL"dT-8 [dRjdRBGA(Rj,O;LA,O)Gs(R,Rj;r.,O)GB(Rs, R; L•, %) 
0 d 

Qc (LA, LB) 
(13) 

If we define the additional Green's functions 

qB(R; LB, TB) = JdR'GB (R' , R; LB, V-B) , 

HA(R; LB, "rA) = IdRjdRBGA(Rj, R; LA, rA) 

and 

(14) 

x GB (RB, Rj ; LB, O) 

= fdRjGA(Rj,R;LA,7-A)qB(Rj;LB,0) (15) 
J 

f 
HB (R; ~-B, LA) = /dRj  G A (R j, 0; LA, 0)G B (R, R j; 7B, 0) 

(16) 
then equations (16) and (17) can be rewritten as 

LA dT"AGA (R, 0; "rA, 0)HA(R; LB, 7-A) 
pA(R ) = 0 (17) 

~c(LA, LB) 

and 

Ca dTBHB(R; 7-B, LA)qB (R; LB, 7-B) 
pB(R ) = o (lS) 

Qc(LA, LB) 

From the definitions given by equations (14)-(16), we 
can derive the SCF equations, 

[~F B bB6 V~+  flcoB(R)] qB(R; 7"B) : 6(TB) 

(0 < rB ~<LB) (19) 

[~A bA VR-[-6 flcoA(R)] HA(R;LB''rA)=qB(R;LB)6(rA) 

(0 < 7"A <LA) (20) 

and 

0 + flWB(R) J HB(R; rB, LA ) 
bB ] 

V 2 
G 6 

= GA(R , O; LA, 0)~5(~-B) 

(0 < rB ~<LB) (21) 

for the Green's functions qB(R;%),HA(R;LB,rA) 
and HB(R;%,LA) respectively. Therefore, equations 
(7)-(11) and equations (17)-(21) are the closed set 
of SCF equations for a single diblock copolymer. If 
set V0A = V0B = V0 and XAA = XBB = XAB = X, the 
SCF equations given above reduce to the case of a 
homopolymer chain 3°. 

Given the Green's functions GA(Rj,0;LA,0), 
qB(R; rB), HA(R; LB, 7A) and HB(R; 7-B, LA). the Helm- 
holtz free energy is calculated by 

flF = - I n  f~c(LA, LB) -- ~ I dR[COA(R)pA(R) 

+ COB(R)pB(R)] (22) 

The mean-square end-to-end distance (R 2) is given by 

(R2) : f dRR 2 f G A (Rj, 0; LA, 0)G B (R, R j; LB, L A)dRJ 
f~c(LA, LB) 

(23) 
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The mean-square end-to-end distances of  block A and 
block B respectively are given by 

(R2} A = f dRR2GA(R, 0; LA, 0)fGB(RB, R; LB, LA)dRB 

Q(LA, LB) 

(24) 

and 

(R2}B 

J'dRjdRBGA(Rj, 0; LA, 0)GB(RB, Rj; LB, LA)(R B - -  Rj) 2 

(25) 

In order to simplify the SCF equations, we assume 
here the A and B segment densities are spherically 
symmetric about  the origin. For a single-chain micelle, 
the spherical assumption might not be too bad. It is most 
clearly wrong in the limit of  a homopolymer  chain, where 
the behaviour of  the inter half differs from that of  the 
outer half. However, the spherical symmetry does permit 
a straightforward numerical solution of the equations 
and we hope that, in spite of  the faults with the 
assumption, a test of  how well it performs in practice 
will be of  some benefit. Thus V2G reduces to 

Or 2 + Or 

and the vector R reduces to the scalar r. The variables r~,  
L A and L A + LB are discretized as 

r = iAr (i = I , . . . ,N , . )  and r~ = N,.Ar (26a) 

rA =.]'AATA (,J'A = 0 , . . . ,  IIA) and L A : IIAAT A (26b) 

rB =/BARB (JB -- 0 . . . .  ,F/B) and LB -- nBArB (26C) 

Here, i -- 0 and Ja = 0 denote that the A block had its 
unattached end segment fixed at the origin. The initial 
conditions and boundary conditions for the copolymer 
SCF equations are 

1 
GA(1 , 1) -- 47rr2A r 

qB(i,O) = 1 

HA(i  , 1) -- qB(i,F/B) 

HB(i ,0) = GA(i, hA) 

and 

GA(Nr,JA ) 0 

qB(N,.,jB) = 1 

HA(Nr,JA ) = 0 

HB(N~,.jB) - 0 

and GA(i, 1) 0 (i 2 . . . . .  N,.) 

(27a) 

(i = 1 . . . .  , Xr) (27b) 

(i 1 ,2 , . . . ,  U~) (27c) 

(i = 1,2 . . . . .  N,.) (27d) 

(/A 0, 1,2, . ,  t l A )  

(]'B = 0, I , . . . , F / B )  

(/A = 0, 1,2 . . . . .  ha) 

(JB = O. 1 , 2  . . . . .  nB) 

(28a) 

(28b) 

(28c) 

(28d) 

Discrete versions of  the SCF equations can be obtained 
by using the implicit Crank Nicholson scheme 7. 

To numerically solve the SCF equations, we begin 
with a guess for the density distributions of  the A and B 
blocks were Gaussian distribution (ideal chain densities) 
and then make an initial guess for wA(i ) and wB(i ). The 
Crank Nicholson scheme then permits the calculation of 

GA(i,jA), qB(i, jB),  HA(Nr,JA ) a n d  HB(Nr,JB ). T h e  new 
density profile p*A(i) and p~(i) can thereby be calculated 
by equations (17) and (18). Thus new estimates ofwX(i) 
and w~(i) can be obtained from equations (10) and (11). 
We then repeat the iteration with a new guess 

w~w(i) = wx(i ) + A[w~¢(i) - wx(i)] 

where A is some relaxation parameter  which typically 
falls between 0.70 and 0.95. This SCF iteration 
procedure is continued until the self-consistency condi- 
tion 

max I~,x(i) - ~Z(i)I ~<c (i = 1,2 . . . . .  N,.) 

is achieved. A value of c = 10 6 is used. 

S E G R E G A T I O N  T R A N S I T I O N  OF A BLOCK 
C O P O L Y M E R  C H A I N  

In this section, we investigate how the conformations of  a 
block copolymer chain change as the interaction para- 
meters vary, using both MC simulations and SCF 
calculations. Then, using only MC simulations, we 
explore the conformations of  the collapsed dumbbell 
form of diblock copolymer chains and the segregation 
transition of triblock copolymer chains. Typically the 

5 5 chain was given between 2 × 10- 5 x 10- moves for 
equilibration in our simulations, and between 10 6,. 
5 × 10 6 moves to calculate averages. The errors were 
estimated by considering sub samples, each of 5 × 10 4 
10 5 moves. For very negative values /kc the results were 
also checked in certain cases by conducting several, 
independent runs, equilibrating from different initial 
configurations. 

SegregatioF/ in diblock copolymer chains 
The AB diblock copolymer lattice chain which we were 

modelling contains 76 A segments and 76 B segments. In 
the MC simulation, we firstly fixed A e B B -  0, and 
calculated various properties with different values of  
ACAA and A~AB. These results are presented in Table 1. 
{NAA ) is defined as the average number of  A A 
neighbour contacts, and similarly for (NBB) and (NAB). 
For  AeBB -- ACAB -- 0 and ACAA going from 0 to --0.8, 
(NAA) increases and the mean-square radius of  gyration 
of the A block decreases. The A block chain crosses over 
from the coil to the globule state whereas the conforma- 
tions of  the B block remain approximately unchanged. It 
stays in the coil state and is extended in the solvent. 
When we fixed / k E ' A A  = --0.8 and AeBB -- 0 and varied 
ACAB from 0 to --0.8, as presented in Tabh, 1, (NAA) and 
(NBB) remain virtually unchanged, i.e. the A block chain 
is in the globule state and the B block chain is still in the 
coil state. However, (NAB) rapidly increases when 
A<~B < --0.5 and the mean-square radius of gyration 
of A segments and B segments decreases slightly. This 
means that the configuration of the B block chain is 
changed from being extended and directed away from 
the A block segments to being still extended, but 
surrounding the A block segments. Snap-shot pictures 
taken from the simulation confirm this interpretation. 

In order to carry out SCF calculations, we took the 
Flory prescription, 

/= /oX/6  (29) 
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and 

n = no/3 (30) 

which, in the absence of excluded volume effects, maps 
the tetrahedrally bonded 'real chain' onto an equivalent 
Gauss±an chain of  the same contour  length. Here n o and 
b0 are the number  of  bonds and the bond length 
respectively for the 'real '  model chain. In our early 
SCF calculations for the homopolymer  3°, fairly good 
agreement between MC simulation and SCF calculation 
was found by letting 

v0 = [-0.45 + 0.72 x ln(n)]l 3 (31a) 

and 

X = 1.204 x ( - A e )  (31b) 

The same transformation procedure has been taken in 
our SCF calculation for the above two stage segregation 
transitions. The mean-square end-to-end distances of  the 
MC simulation and SCF calculation are presented in 
Table 1. It can be seen that the results of  these two 
methods are in reasonable agreement for a wide range of 
solvent conditions. 

Collapsed dumbbell form of  diblock chains 
We simulated the same chain as above, but this time 

we put ACAA = --0.8, AeBB = --0.8 and let AeAB vary 
between 0 and -0 .8 .  The results are presented in Table 2. 
As can be seen, (NAA) and (NBB), and the mean- 
square radius of  gyration of block A, (R~)A,  a n d  block B, 
(R~)B, are almost unchanged. This means both the 
conformations of  block A and block B stay in the globule 
state when AeAB varies. However, (NAB) rapidly 
increases for AeAB below the 0 point and the mean- 
square distance between the centres of  masses of  the 
blocks A and B, (dAB), decreases. This is in keeping with 

the idea that for A C A B  above the 0 point, the copolymer 
is in a collapsed dumbbell form, but when AeAS becomes 
more negative, the lobes start to fuse together to form 
one globule state like that of  a homopolymer.  The 
uniform conformation is in a globule state here rather 
than in the random flight state treated by Edwards 16. 

By setting the interaction parameters a s  AE 'AA = 

AeBB = Af t  0 + Af t  and AEA B = - -AC0 -- A y  (Aft0 = 

-0 .5  at the Flory 0 point), we simulated an AB lattice 
chain with three different lengths for the Edwards '  
special case where the segment interaction parameters 
UAA = ~JBB = --UAB. The details of  simulation results for 
NA = NB = 126 are also presented in Table 2. In fact, the 
case is much more complicated than the earlier one 
because of the way the interaction parameters were set. 
As Ae increases from -0 .3  to 0.3, the chain changes from 
a collapsed dumbbell form to the random flight state at 
the 0 point (A¢ = 0), then to a wring state in which two 
blocks of  the chain wring together. The distance between 

2 2 the mass centres of  block A and B, (d~B)/l~, has a 
maximum at Ae = 0, where the chain is a homopolymer  
and in the 0 condition. As Ae becomes negative, both 
block A and B are shrunken in size and thus (d2B)/12 
decreases. On the other hand, for positive Ae, (NAB) 
increases sharply and the sizes of  A and B block 
keep approximate ly  the same. This fusing of  block A 
and B makes smaller (d2B)/l~. The average number  of  
A - B  neighbour contacts (NAB) is plotted against Ae in 
Figure 1 for the three different lengths of  chains. 
As expected, the longer the chain length is, the sharper 
the phase transition. However,  our  results still fall 
short to give the impor tant  information on the order 
of  the transition and on the critical temperature  due 
to the limited size of  the simulation system and the 
poor  statistical sampling scheme as ]Ae] becomes 
bigger. We hope to return to this problem in future 
work. 

Table l Segregations in diblock copolymer chain 

A~BB = 0 AGAB = 0 n A --  n B =  76 
ASAA (NAA) (NBB) (NAB) (R~)A//~) (R2)s/l~ ((R2)/12O)MC ((R2>/12)sce 

0.0 4.20 4- 0.03 4.08 ± 0.02 0.69 4- 0.01 36.3 4- 0.11 35.9 4- 0.12 515 ::k 1.3 501.7 

-0.1 4.78 4- 0.04 4.09 ± 0.03 0.70 4- 0.01 34.8 + 0.14 35.7 + 0.09 502 ± 1.7 495.3 

-0 .2  5.52 ± 0.04 4.11 4- 0.03 0.69 4- 0.01 33.3 ± 0.14 35.8 ± 0.10 494 4- 1.2 486.0 

-0 .3  6.54 4- 0.04 4.08 + 0.03 0.72 4- 0.01 31.2 ± 0.13 36.0 ± 0.15 480 4- 1.9 475.4 

- 0 . 4  7.9 + 0.1 4.07 ± 0.03 0.72 4- 0.01 28.8 4- 0.16 35.9 4- 0.15 459 4- 1.7 462.9 

-0 .5  9.3 ± 0.1 4.10 ± 0.04 0.73 4- 0.02 26.3 4- 0.19 35.9 4- 0.13 442 ± 2.1 448.9 

-0 .6  11.3 ± 0.2 4.07 4- 0.04 0.73 4- 0.01 23.1 ± 0.27 35.8 4- 0.11 417 ± 2.2 432.9 

-0 .7  13.7 4- 0.15 4.04 4- 0.03 0.77 ± 0.01 20.1 4- 0.18 36.2 ± 0.14 395 4- 2.4 413.0 

-0 .8  17.1 4- 0.34 4.08 4- 0.03 0.78 ± 0.02 16.5 ± 0.28 35.9 ± 0.10 365 4- 2.7 383.6 

AEAA = - -0 .8  AEBB = 0 n A = n B = 76 
/"eAB (NAA) (Ns. )  (NAB) (R2g)A/l 2 (Rag)B/120 ((R2)/12)MC (<R2)/12)scv 
-0 .1  16.6 4- 0.3 4.07 4- 0.03 1.02 ± 0.03 16.7 + 0.3 35.9 4- 0.09 362 ± 2.0 377.0 

-0 .2  16.2 ± 0.3 4.03 4- 0.03 1.17 4- 0.03 17.2 4- 0.3 35.9 4- 0.09 361 ± 2.4 367.1 

-0 .3  16.4 + 0.2 4.06 ± 0.04 1.61 ± 0.03 17.1 ± 0.2 35.8 4- 0.1 350 4- 1.8 355.2 

- 0 . 4  17.2 ± 0.4 4.16 4- 0.04 2.13 4- 0.04 16.2 4- 0.3 35.3 4- 0.1 330 ± 2.5 340.2 

-0 .5  16.2 ± 0.4 4.16 4- 0.04 3.2 4- 0.1 16.9 4- 0.3 35.1 + 0.2 314 + 3.0 322.6 

- 0 . 6  16.9 2_ 0.2 4.14 ± 0.03 4.8 ± 0.1 16. l 4- 0.2 34.2 4- 0.1 283 + 2.2 302.5 

-0 .7  16.7 4- 0.3 4.31 4- 0.04 7.8 ± 0.3 15.9 4- 0.2 32.6 4- 0.2 239 4- 3.0 278.8 

-0 .8  16.5 4- 0.4 4.61 4- 0.09 14.2 ± 0.7 14.8 4- 0.3 29.1 + 0.4 179 -k 4.6 245.8 

POLYMER Volume 38 Number 2 1997 343 



MC simulation and SCF theory for block copolymer systems. X. F. Yuan and A. J. Masters 

Table 2 Collapsed dumbbell form of diblock chain 

AKAA --  - -0 .8  ASBB = --0.8 n A --  n B -- 76 
2XS AB (NAA) ( NBB) (NAB} ( R:g) A//~ ( R~)B/ /o ( R:) fl[, I~t~,.l / l?, 

0.0 16.8 ± 0.2 15.9 ± 0.2 0.89 ± 0.01 16.7 -F 0.2 17.1 -k 0.2 226 ± 2.2 296 ± 1.9 

-0.1 16.7 ± 0.3 16.4 ± 0.2 1.11 ± 0.02 16.8 ± 0.2 16.6 ± 0.2 220 ± 2.1 286 ± 2.4 

-0 .2  16.6 ± 0.2 16.5 ± 0.2 1.46 -F 0.03 17.0 + 0.2 16.6 ± 0.2 217 ± 1.9 275 ± 2.3 

-0 .3  16.0 + 0.2 16.2 ± 0.3 1.86 ± 0.04 17.4 ± 0.2 16.7 ± 0.2 214 k- 2.1 266 ± 2.3 

-0 .4  16.6 ± 0.2 16.2 ± 0.2 2.55 -F 0.06 16.7 ± 0.2 16.8 ± 0.2 200 ± 1.6 244 ± 1.6 

-0 .5  16.9 ± 0.1 16.0 ± 0.2 3.6 ± 0.1 16.4 ± 0.1 16.8 ± 0.2 185 ± 1.4 217 ± 2.0 

-0 .6  16.4 ± 0.2 16.7 ± 0.2 5.2 ± 0.2 16.4 ± 0.2 15.8 ± 0.2 165 ± 2.2 183 ± 3.1 

-0 .7  16.5 ± 0.4 16.4 ± 0.3 9.0 ± 0.5 15.8 ± 0.3 15.7 ± 0.3 136 ± 3. l 135 ± 4.5 

-0 .8  15 .9±0.3  16 .520 .4  12 .9±0.6  15 .6±0.3  15 .020.3  11023 . 0  91 ±4.1 

AEAA &eBB --  0.5 ÷ A g  &gAB -- --0.5 ',~£ n A --  n B -- 126 
a~ I N AAI <'%~1 I N a~) ( Re~I A/ /~, I n~>~/ /?, (R21/]~ (NAB)/]~) 
-0 .3  34.3 ± 0.6 34.4 ± 0.7 1.62 ± 0.03 22.4 ± 0.4 21.8 + 0.5 279.8 ± 0.8 387 + 4.8 

-0 .2  28.2 + 0.6 28.9 ± 0.6 2.09 ± 0.05 28.5 ± 0.5 28.0 ± 0.5 360 ± 5.3 452 ± 6.0 

-0.1 21.9 ± 0.3 22.4 + 0.7 2.8 ± 0.1 36.2 = 0.4 35.8 ± 0.8 451 --- 6.0 504 ± 6.9 

0.0 17.6 ± 0.2 17.6 + 0.3 4.6 ± 0.2 43.0 _+ 0.4 42.6 ± 0.4 506 ± 5.3 511 ± 8.2 

0.1 14.0 ± 0.2 14.5 ± 0.2 7.5 + 0.5 47.4 = 0.3 46.6 ± 0.6 501 ± 7.6 449 ± 11 

0.2 12.3 ± 0.3 12.7 + 0.4 16 ± 1 46.5 ± 0.9 46.6 =_ 0.9 409 ± 14 291 ± 17 

0.3 11.4-t-0.5 12.1 ± 0 . 5  2 8 ± 2  4 2 2 2 . 0  41 ± 2 . 0  2 8 6 ±  17 138± 18 

Segregation transition in triblock copolymer chains 
A triblock ABA lattice chain which comprises 45 A 

segments connected to 90 B segments followed by 
another 45 A segments, i.e. NA1 = 45 ,  NB = 90 and 
NA2 = 45, was simulated. We call the first A block A1 
and the second A2. We set &eBB = 0 and ACAB = --0.5 
and calculated the properties as one varied AgAA. The 
results are presented in Table 3. The average neighbour 
contact number  of  non-bonded B B segments, (NBB), 
and A B segments, (NAB }, are changed slightly when 
ACAA becomes more negative. But, the average neigh- 
bour contact number  between A1 block segments and 
A2 block segments, (NAA}12, rapidly increases for 
z2kEaA <--0.8 and the mean-square distance between 
the centres of  mass of  the block A I and the block A2, 

9 ") 
(d~A)12/b~, decreases rapidly. It should be noted that 
(NAA)I  ~ (NAA)2 in every transition stage and 
(NAA)I  ~ (NAA)12 ~,'~ (NAA)2 a t  ACAA = - 1 . 2 ,  i.e. A 
segments from different A blocks are entirely mixed 
together. This implies that a transition takes place from 
the state of  two collapsed A globules at either end of 
the B chain to a state of  one collapsed A globule with a 
loop of B chain sticking out. The peak in the heat 
capacity (Cv) and the sharp increase of  the average 
number  of  A A neighbour contacts between different 
A blocks (NAA)I  2 shown in Figure 2 are signs of  the 
transition. The transition temperature  here might be 
lower than the actual transit ion temperature  due to a 
finite chain. 

The transition is basically determined by a competi-  
tion between the A - A  segments desire to mix together 
(energy driven) and the B block chain's  desire to be in 
an extended coil state (entropy driven). In the con- 
format ion of two collapsed A globules at either end of 
the B chain, the latter factor dominates.  In the 
configurations having one collapsed A globule with a 
loop of  B block chain sticking out, the former factor 
dominates.  Of  course, many  more simulations are 

3~ ,,''l''''lil''l''''l''''l '' I''''I'''' 

3O" 

Na=Nb=126 
25' --  "Q -- Na=Nb=g4 

A~ 20' "" "~" " Na=Nb=60 1 ,  

Z 15' 

10 1 " ..~ 

0.4 -{).3 -0.2 -(I. I 0 O. 1 0.2 (). ~, 0.4 

Ae 

Figure 1 The average number of A B neighbour contacts (NAB } is 
plotted against Ac 

needed to map  out the phase diagram in terms of  the 
molecular parameters.  

S U M M A R Y  

We has developed a self-consistent field theory and a 
Monte Carlo simulation method for predicting the 
conformational  properties of  a block copolymer chain. 
The Monte Carlo simulations have served to check the 
validity of  SCF theory and to explore new phenomena 
involving a single block copolymer chain. 

The common conformations of  diblock copolymer 
chains are of  one block (A block) in a globule state (i.e. 
the solvent bad for A block segments) and the other 
block (B block) in a coil state (i.e. the solvent good for B 
block segments). A simple new mean-field potential, 
equations (14) and (15), was used to remedy the 
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Table 3 Segregation transition in triblock copolymer chain 

AEAB -- - - 0 . 5  A~BB = 0 NA1 = 45  N B = 90  NA2 = 45  
ACAA (NAA) 11 (NAA) 12 (NAA)22 (NBB) (NAB) ( R 2 ) / b 2  (d~A)12 / l  0 "~ 2 

-1.20 11.4 4- 0.3 11.7 4- 1.0 10.9 4- 0.4 5.5 4- 0.3 4.6 + 0.3 99 4- 12.2 230 4- 37.2 

-1.10 10.2 4- 0.3 10.7 4- 0.8 10.1 4- 0.3 6.8 4- 0.3 7.6 4- 0.5 116 4- 12.5 254 ± 39.6 

1.05 10.1 4- 0.1 5.5 ± 0.7 9.9 4- 0.2 5.8 4- 0.4 6.2 4- 0.3 208 4- 12.9 544 4- 38.1 

-1.00 10.2 4- 0.2 4.3 + 0.7 9.6 4- 0.2 5.2 4- 0.2 6.4 + 0.3 244 4- 13.5 634 4- 40.9 

-0 .9  8.5 4- 0.1 2.2 4- 0.4 8.5 4- 0.2 5.2 5- 0.1 5.9 + 0.3 312 4- 9.1 808 4- 27.3 

-0.8 7.53 4- 0.07 1.0 + 0.2 7.54 4- 0.08 5.05 4- 0.04 5.4 4- 0.1 364 4- 4.0 925 4- 11.7 

-0 .7  6.56 4- 0.06 0.7 5- 0.1 6.45 + 0.06 5.10 4- 0.03 5.19 4- 0.08 393 4- 3.6 972 5- 10.3 

-0 .6  5.56 5- 0.04 0.30 4- 0.02 5.60 4- 0.04 5.06 4- 0.03 5.15 5- 0.06 426 4- 1.8 1032 4- 4.9 

ASA A (R2)AI/Io (R2)  B/ /2  <R2)A2/ l  2 (Rg)/l~ 2 2 (Rg)A 1 2 /l~ 2 ( R g ) B / I  0 2 2 (Rg)A2/I~ 2 2 

-1.20 38 ± 1.8 96 4- 8.5 33 ± 2.3 37 + 1.9 8.0 + 0.2 32.6 + 0.7 7.4 ± 0.2 

-1.10 41 4- 2.3 87 ± 11.0 46 4- 2.4 35 4- 2.2 8.3 4- 0.2 32.1 4- 1.0 8.5 + 0.3 

-1.05 45 + 1.3 171 4- 8.3 42 + 1.2 51 4- 2.0 8.8 4- 0.1 36.9 + 0.7 8.7 + 0.1 

1.00 454- 1.2 1884-9.4 4 8 ±  1.2 564-2.0 8 .7+0.2  37.74-0.7 9.1 ±0.1 

-0 .9  544- 1.2 2264-6.0 55±  1.0 64:1_ 1.4 10.24-0.1 40.04-0.5 10.1 4-0.1 

-0.8 62.6 + 0.6 249 4- 2.8 63 4- 0.7 70.5 -+- 0.6 11.28 4- 0.07 41.7 ± 0.3 11.27 4- 0.09 

-0.7 72.0 4- 0.5 256 4- 2.4 70.8 -- 0.6 73.6 4- 0.5 12.48 4- 0.07 42.3 4- 0.2 12.44 4- 0.07 

-0 .6  80.9 4- 0.5 267 4- 1.1 80.1 4- 0.4 77.1 + 0.3 13.74 4- 0.06 42.9 ± 0.1 13.63 4- 0.06 

15 5 0  ' ' ' ' 1  . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  I . . . .  ] 

45 L T @ -- O -  <Cv> 
I ~t 12 

411 / " ~  ~l , ,  , <Naa>12 

^ 35 t - ~ ' <  ~ T Ty- \.xx\ 9 z ^ 
> 

o 30 < 
v ;, 

6 25 {t 

20 N N 

15 ~ \  
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Figure 2 The average number of A A neighbour contacts between 
different A blocks (NAA)I? and the mean heat capacity (Cv) is plotted 
against AeAA 

problems of  the unphysically high segment densities for 
the original SCF equations. The errors in the SCF 
calculations mainly arise f rom using an approximate  
Van der Waals like mean field, equations (14) and (15), 
and in the identification of  the basic quantities of  an 
equivalent Gauss±an chain, such as the segment volume, 
the interaction paramete r  and the Kuhn  statistical 
length, for polymers.  In addition to these, the assump- 
tion of  fixing one end at the origin is very crude. 
Nevertheless, using the relationships of  v0 ~ n [equa- 
tion (31a)] and X ~ Ae [equation (31b)], the mean- 
square end-to-end distances of  a block copolymer  
calculated by SCF theory was found to be reasonably 
in agreement  with the results f rom MC simulations. 
This suggests that  our s t raightforward SCF calculation 

is of  some benefit in practice. In our earlier publication 
on SCF calculations for micelle format ion by block 
copolymers 8, the assumption of  fixing one end at the 
origin has been relaxed and good agreement with 
experiments has also been achieved. 

The segregation transitions of  an AB diblock and an 
ABA triblock copolymer chain are modelled by MC 
simulation using the single bond rotation algorithm. We 
found a phase transition occurs between the chain having 
a spherical shape to it having dumbbell state, for the case 
of  L A = LB and by varying AeAB from --0.8 to 0.0 and 
f ixing ACAA = ACBB = --0.8. However, for the Edwards'  
case of/)AA = WBB =--2)AB, we have not obtained any 
conclusive result at present to indicate whether a phase 
transition exists. A sharp transition between two 
conformations has been observed for an ABA triblock 
copolymer chain in the case of  L A = LA2 and LAI+ 
LA2 = L B. When AeBB = 0.0 and AffAB = --0.5, varying 
ACAA from --0.6 to --1.20, leads to the occurrence of a 
phase transition: from two collapsed A globules at either 
end of the B chain to one collapsed A globule comprising 
of both A blocks with a loop of B chain sticking out. As 
the concentration of  triblock copolymers in solutions 
increases, one conformation of  a chain prefers to form 
itself into a micelle state while another intends to form a 
network. Thus, the studying of  such a phase transition 
has great importance on the understanding of the 
viscoelastic properties of  triblock copolymeric gels. We 
intend to carry out a more careful study on the subject in 
the future. 
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